Video in the Interface Georgia Tech

Video: the BEST* modality

- As passive or active as needed
- Simple directional localization
- Line-of-sight supports see/be seen paradigm (within visible spectrum)
- Rich sensor

^{*} According to a vision person.

Video Details

- Analog vs Digital
 - TV monitors
- Frame rates
 - 10fps for smoothness, 30fps common
- Resolution
 - Broadcast standards (NTSC, PAL, SECAM)
- Interlacing

Video Details (cont'd)

- Color scheme
 - RGB (familiar 3-byte rep)
 - YCC/YUV (Y=luminance, CC=chrominance/hue)
- Formats
 - Analog: composite, S-Video, component

DV standard

- 720 × 480
- 24-bit
- 29.97 fps
- .9 pixel aspect ratio (not square!)
- 44.1kHz stereo audio
- 4:1:1 YCC/YUV

Storing Digital Video

- Single frame of uncompressed video
 - $720 \times 486 \times 3 = 1049760 \text{ bytes} \sim 1\text{MB!}$
 - I second = 30MB
 - I Minute = 1.5GB
- Must compress
 - Normal Digital Video (DV) is 5:1

Compression

- Reduce resolution
- Reduce frame rate
- Reduce color information
 - Humans more sensitive to luminance than color
- Spatial (intra-frame) vs. Temporal (inter-frame)
- Codec handles compression and decompression of video

Wrapper vs. CODEC

- Wrappers:
 - tif, mov, qt, avi
- CODECS:
 - Sorenson, DV, Cinepak, MPEG II
- CAUTION: Lossy vs. Lossless

Using Video

- Much like other natural data types:
- As data
 - Playback/reminder
- Image understanding
 - Extracting features

Motivating Automated Capture

Weiser's vision: ubiquitous computing

technology seamlessly integrated in the environment

provides useful services to humans in their everyday activities

Video (and other natural data types) are a part of the "seamless integration" component of this: make the machine adapt to the person, rather than the other way around

Motivation

- Scenarios in Weiser's Scientific America article:
- Sal doesn't remember Mary, but she does vaguely remember the meeting. She quickly starts a search for meetings in the past two weeks with more than 6 people not previously in meetings with her, and finds the one.

Sal looks out her windows at her neighborhood. Sunlight and a fence are visible through one, and through others she sees electronic trails that have been kept for her of neighbors coming and going during the early morning.

Defining Capture & Access

- Recording of the many streams of information in a live experience and the development of interfaces to effectively integrate those streams for later review.
- Most often: in video-as-data mode

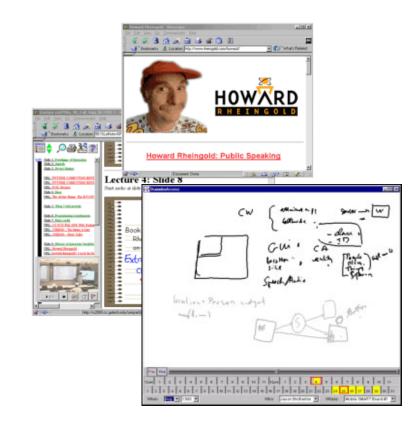
Capture & Access Applications

Automated <u>capture</u> of live experiences for future <u>access</u>.

natural input

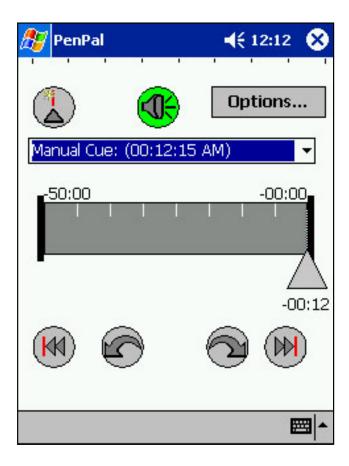
indexing

ubiquitous access


Capture & Access Applications

Augmenting devices & environments with a

memory


Capture & Access Design Space

- Benefits of automated capture and access have been explored in a number of domains, such as:
 - Classrooms:
 Lecture Browser,
 - Authoring on the Fly
 - Meetings: Tivoli, Dynomite, NoteLook
 - Generalized experiences: Audio Notebook, Xcapture
- Application design space defined by:
 - Who: Users & roles
 - What: Experience & captured representation
 - When: Time scale
 - Where: Physical environments
 - How:Augmented devices & methods

Non-video example: PAL

- Personal Audio Loop
 - Instant review of buffered audio
 - relative temporal index
 - even/ReplayTV like jumps
 - cue/marker annotations
 - rapid skimming/playback

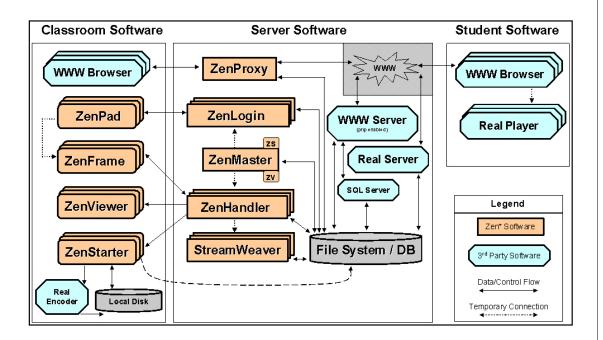
Example: eClass

Formerly known as Classroom 2000

electronic whiteboard microphones

cameras
web surfing machine
extended whiteboard

Example: eClass


- synchronize streams
- web access

Example: eClass

- Separation of concerns made eClass evolvable for ~6 years
 - pre-production
 - capture
 - post-production
 - access

Building Capture & Access Applications

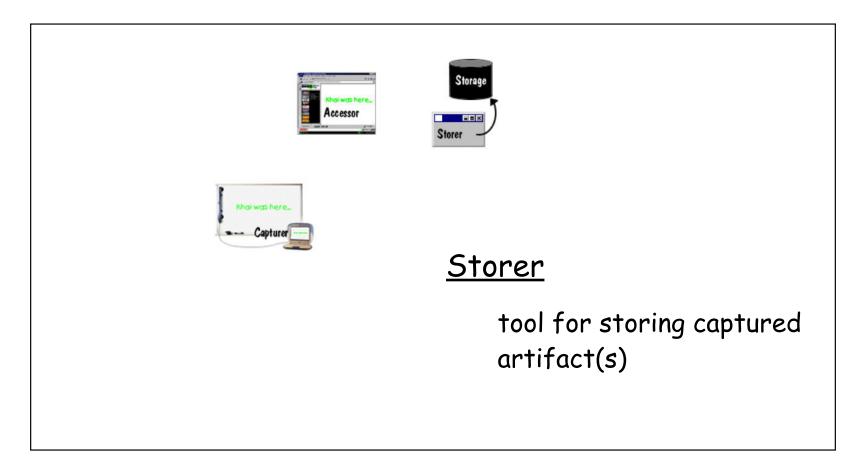
• What are requirements for any infrastructure to facilitate these kinds of applications?

(\underline{In} frastructure for \underline{C} apture & \underline{A} ccess)

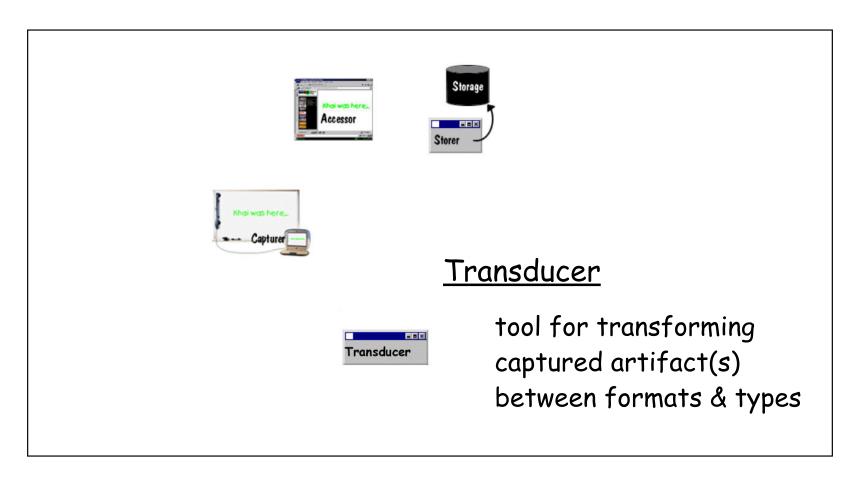
• Infrastructure aimed to facilitate the development of capture and access applications.

Capturer

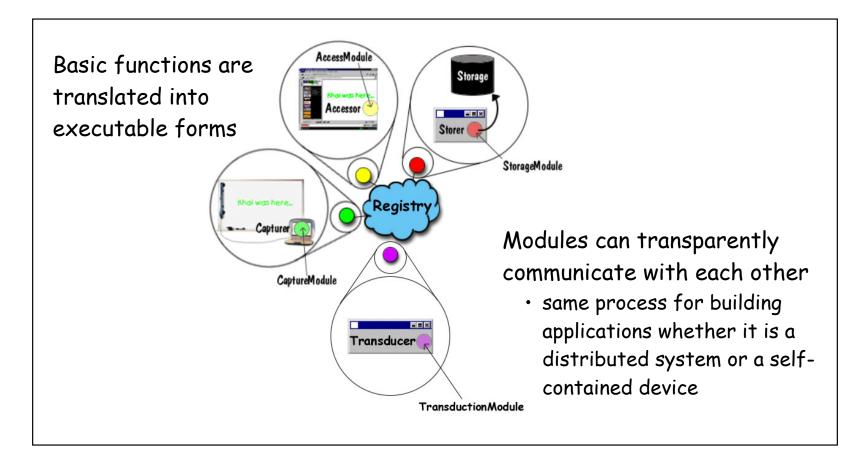
tool for generating artifact (s) documenting history of what happened.






Accessor

tool for reviewing captured
artifact(s)



eClass in INCA

Information integration & synchronization

- Support for the integration of information is wrapped into access
- Supports a data-centric model of building capture & access applications:
 - captured data = content + attributes
 - Simple way to specify data being captured
 - Simple way to specify data to access
 - Simple way to associate different pieces of captured data

Additional features

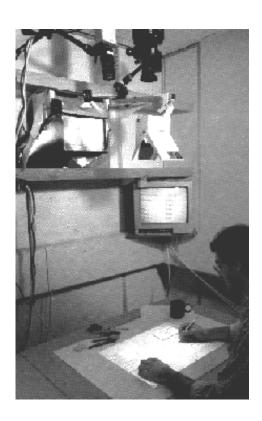
- Additional support is provided to protect privacy concerns
 - Various stakeholders can observe and control the run-time state of an application

Interfaces based on Video Recognition

- Generally, has the same problems as using other forms of natural input for recognition
 - Errors, error correction
- Other problems, more-or-less unique to video
 - Unintended input
 - How to give feedback in the same modality?
 - Speech input, speech feedback
 - Video input.... what is equivalent of video feedback?

Image Analysis

- Thresholds
- Statistics
- Pyramids
- Morphology
- Distance transform
- Flood fill
- Feature detection
- Contours retrieving


Recognizing Video Input

- Often leads to feature-based recognizers
 - Similar to those described for handwriting analysis
- Some work recently on how to make these easier to construct:
 - "Image Processing with Crayons" -- Fails & Olsen. CHI 2003
 - Take sample video images
 - "Color" over them to indicate positive and negative samples
 - System generates classifier based on most salient features
 - Easy to integrate into other applications without ML programming

Other Recognition-Based Interfaces

- DigitalDesk
 - Recall from movie day
 - Two desks:
 - Paper-pushing
 - Pixel-pushing
 - Applications:
 - Calculator
 - Paper Paint
 - etc.
- Very simple "recognition"
 - Background subtraction from projected image to find occluded areas
 - Assume finger shape, tap sound used to trigger action
 - Other approaches: offset camera, look at when object and shadow collide

Other Recognition-Based Interfaces

- ScanScribe
 - Saund, UIST'03. Interaction with images drawn on a whiteboard through video
 - Available for free download from PARC:
 - http://www.parc.com/research/projects/scanscribe/
 - (Not just useful for video... perceptually-supported image recognition)
- ZombieBoard
 - Saund
 - Combines video image as data with video image as command
 - Whiteboard capture tool

Support for Video in the UI

- Java Media Framework (JMF)
 - Handling raw video
 - http://java.sun.com/products/java-media/jmf/
- Vision
 - VIPER Toolkit (Maryland)
 - http://viper-toolkit.sourceforge.net/
 - Intel's OpenCV
 - http://sourceforge.net/projects/opencylibrary/